Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature

Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/joc.4127/abstract):  Gridded topoclimatic datasets are increasingly used to drive many ecological and hydrological models and assess climate change impacts. The use of such datasets is ubiquitous, but their inherent limitations are largely unknown or overlooked particularly in regard to spatial uncertainty and climate trends. To address these limitations, we present a statistical framework for producing a 30-arcsec (∼800-m) resolution gridded dataset of daily minimum and maximum temperature and related uncertainty from 1948 to 2012 for the conterminous United States. Like other datasets, we use weather station data and elevation-based predictors of temperature, but also implement a unique spatio-temporal interpolation that incorporates remotely sensed 1-km land skin temperature. The framework is able to capture several complex topoclimatic variations, including minimum temperature inversions, and represent spatial uncertainty in interpolated normal temperatures. Overall mean absolute errors for annual normal minimum and maximum temperature are 0.78 and 0.56 °C, respectively. Homogenization of input station data also allows interpolated temperature trends to be more consistent with US Historical Climate Network trends compared to those of existing interpolated topoclimatic datasets. The framework and resulting temperature data can be an invaluable tool for spatially explicit ecological and hydrological modelling and for facilitating better end-user understanding and community-driven improvement of these widely used datasets.

project_id
53ff993ee4b01f35f8fe9968
Project_type
Publication
CSC Name
North Central CASC
usgs summary

Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/joc.4127/abstract):  Gridded topoclimatic datasets are increasingly used to drive many ecological and hydrological models and assess climate change impacts. The use of such datasets is ub ...

csc id
4f83509de4b0e84f60868124
csc status
N/A
test field
2014-08-28T15:03:58.776-06:00