Throughout western North America, warming associated with climate change is leading to both earlier spring peak streamflows and earlier seed dispersal, potentially reducing seedling establishment and in turn reducing the quality of riparian (near-river) forests, which provide critical habitat for diverse birds, mammals, reptiles, amphibians, and insects, and food and shade for fish and other aquatic animals. This project aims to predict these effects of climate change on cottonwood and willow tree regeneration in western forests by linking models of seed dispersal timing, streamflow hydrology, and seedling establishment, focusing on the upper South Platte River Basin as a study area. Results will help land managers anticipate future changes in riparian wildlife habitat quality, and potentially to respond to these changes by actively re-vegetating high-priority areas, or by working with water management agencies to schedule dam releases that favor cottonwood and willow establishment.
Throughout western North America, warming associated with climate change is leading to both earlier spring peak streamflows and earlier seed dispersal, potentially reducing seedling establishment and in turn reducing the quality of riparian (near-river ...