Reconstruction of fire regimes through integrated paleoecological proxy data and ecological modeling

Abstract (from http://journal.frontiersin.org/article/10.3389/fpls.2014.00785/abstract): Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactions between top-down climate-driven and bottom-up fuel-related processes. Disentangling climatic from non-climatic drivers of past fire regimes is a grand challenge in Earth systems science, and a topic where both paleoecology and ecological modeling have made substantial contributions. In this manuscript, we (1) review the use of sedimentary charcoal as a fire proxy and the methods used in charcoal-based fire history reconstructions; (2) identify existing techniques for paleoecological modeling; and (3) evaluate opportunities for coupling of paleoecological and ecological modeling approaches to better understand the causes and consequences of past, present, and future fire activity.

project_id
54ef8ccde4b02d776a684bf7
Project_type
Publication
CSC Name
North Central CASC
usgs summary

Abstract (from http://journal.frontiersin.org/article/10.3389/fpls.2014.00785/abstract): Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactio ...

csc id
4f83509de4b0e84f60868124
csc status
N/A
test field
2015-02-26T14:14:53.962-07:00