This dataset represents the area in the Greater Yellowstone Ecosystem prioritized for different whitebark pine(Pinus albicaulis) management activities, summarized by land classes. This data was developed for use in a landscape simulation modeling study aimed at evaluating how well alternative management strategies maintain whitebark pine populations under historical climate and future climate conditions. For the study, we developed three spatial management alternatives for whitebark pine in the Greater Yellowstone Ecosystem representing no active management, current management, and climate-informed management. These management alternatives were implemented in the simulaton model FireBGCv2 under historical climate and three future climate change scenarios - the HadGEM-ES, CESM1-CAM5, and CNRM-CM5 Global Circulation Models under the RCP 8.5 emissions scenario. We worked with the Greater Yellowstone Coordinating Committee's (GYCC) Whitebark Pine Subcommittee to develop this spatial representation of their current management strategy. The treatments mapped represent a set of the treatments recommended in the GYCC Whitebark Pine 2011 Strategy document and include planting blister-rust resistant whitebark pine seedlings, competition removal thinning, wildland fire use and prescribed fire, and protection from mountain pine beetles using verbenone and carbaryl. We used historical and future projections of climate suitability based on species distribution models for whitebark pine (Chang et al. 2014) to map zones of core, deteriorating, and future whitebark pine habitat. Core zones were those areas that are currently suitable for whitebark and remain suitable in the future. Deteriorating zones were where the climatic conditions for whitebark pine are expected to decline. Future zones were areas that are projected to become newly suitable for whitebark pine. We then overlaid our climate zones for whitebark pine with similar projections of future climate suitability for all of whitebark pine’s competitors - Engelmann spruce, subalpine fir, lodgepole pine, and Douglas-fir (Piekielek et al. 2015. We discussed the different combinations of climate suitability zones (core, deteriorating, future) and potential future level of competition (low or high) from other species with the GYCC Whitebark Pine Subcommittee to determine which management activities should be prioritized within each management zone. The result is a map of management zones where different activities are prioritized to meet the goal of maintaining whitebark pine populations. This was used to determine which treatments would be implemented spatially during the simulation modeling, dependent upon additional criteria related to simulated stand-level conditions. In this dataset, we used the resulting map of spatially prioritized management activities to summarize the area prioritized for each management activity that fell within different land classifications (mutliple use forests, National Park Service lands, Wilderness lands, and non-federal lands).
This dataset represents the area in the Greater Yellowstone Ecosystem prioritized for different whitebark pine(Pinus albicaulis) management activities, summarized by land classes. This data was developed for use in a landscape simulation modeling study ai ...