Using a Collaborative Modeling Approach to Explore Climate and Landscape Change in the Northern Rockies and Inform Adaptive Management

Federal land managers need an adaptive management framework to accommodate changing conditions and that allows them to effectively link the appropriate science to natural resource management decision-making across jurisdictional boundaries. FRAME-SIMPPLLE is a collaborative modeling process designed to accomplish this goal by coupling the adaptive capabilities of the SIMPPLLE modeling system with accepted principles of collaboration. The two essential components of the process are FRAME (Framing Research in support of the Adaptive Management of Ecosystems), which

Assessment of Data Integration Capacity

The North Central Climate Science Center (NC CSC) involved federal, state, tribal, and university partners to implement a pilot study aimed at developing data and information exchange protocols and identifying analytical needs across a broad network of partners. The study was organized around a set of management questions identified by the NC CSC’s partners. Issues related to species, landscapes, and ecosystem connections were used to orient the study across various scales of decision-making.
 

Data Integration for Landscape Conservation Workshop

Colorado State University organized and hosted a workshop aimed at developing an information technology framework for data integration related to climate change impacts on ecosystems and landscape conservation. The workshop included key federal and state agency partners, tribal governments, and universities. The objective of the workshop was to develop an information technology strategy to handle the various data, information, and computational services which the eight regional DOI Climate Science Centers will be responsible for delivering to stakeholders.
 

Projecting the Future Encroachment of Woody Vegetation into Grasslands of the Northern Great Plains by Simulating Climate Conditions and Possible Management Actions

Maintaining the native prairie lands of the Northern Great Plains (NGP), which provide an important habitat for declining grassland species, requires anticipating the effects of increasing atmospheric carbon dioxide (CO2) concentrations and climate change on the region’s vegetation. Specifically, climate change threatens NGP grasslands by increasing the potential encroachment of native woody species into areas where they were previously only present in minor numbers.

Projecting Future Climate Effects on Cottonwood and Willow Seed Dispersal and Tree Regeneration in Western Riparian Forests

Throughout western North America, warming associated with climate change is leading to both earlier spring peak streamflows and earlier seed dispersal, potentially reducing seedling establishment and in turn reducing the quality of riparian (near-river) forests, which provide critical habitat for diverse birds, mammals, reptiles, amphibians, and insects, and food and shade for fish and other aquatic animals.

Integrating Climate and Biological Data into Management Decisions for the Greater Sage-­Grouse and their Habitats

Climate affects both the demographics of the Greater sage-grouse bird and the condition and long-term viability of their habitats, including sage-steppe communities. This project builds on collaboration among federal land managers, state wildlife biologists, scientists, and other organizations to create a long-term framework for implementing adaptive management for the sage-grouse. The study will examine factors that might be limiting grouse numbers and will investigate components of weather patterns in relation to projected climate change models.

Bringing Together Scientists and Resource Managers to Assess Science Needs and Address Questions Related to Conservation in a Changing Climate

Climate scientists need more and better information about the needs of decision-makers and managers, while decision-makers need better information about how a changing climate may affect their management and conservation objectives.

Regional Short- and Long-term Climate Impacts on Northern Rocky Mountain and Great Plains Ecosystems

With joint funding from the North Central Climate Science Center (NC CSC) and NASA's Earth Science Applied Sciences Program, the NC CSC supports resource managers and their decision process through its Resource for Vulnerability Assessment, Adaptation and Mitigation Planning (ReVAMP), a collaborative research/planning effort supported by high performance computing and modeling resources. The NC CSC focuses primarily on climate data as input to the ReVAMP.

Understanding Extreme Climate Events in the North Central U.S.

The climate of the North Central U.S. is driven by a combination of factors, including atmospheric circulation patterns, the region’s complex topography which extends from the High Rockies to the Great Plains, and variations in hydrology. Together, these factors determine the sustainability of the region’s ecosystems and the services that they provide communities.