Water balance across regional climate gradients: A comparison of two potential evapotranspiration metrics (1980-2099).

Historical and projected climate data and water balance data under three GCMs (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) from 1980 to 2099 was used to assess projected climate change impacts in North Central U.S. We obtained required data from MACA data (https://climate.northwestknowledge.net/MACA/). Historical time period ranges from 1980 to 2005, and projected time period ranges from 2071 to 2099.

Projected and Historical Thornthwaite Moisture Index (MI) under IPSL-CM5A-MR GCM across North Central U.S. (1980-2099)

Historical and projected climate data and water balance data under three GCMs (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) from 1980 to 2099 was used to assess projected climate change impacts in North Central U.S. We obtained required data from MACA data (https://climate.northwestknowledge.net/MACA/). Historical time period ranges from 1980 to 2005, and projected time period ranges from 2071 to 2099.

Historical Thornthwaite Moisture Index (MI) under IPSL-CM5A-MR GCM across North Central U.S. (1980-2005).

Historical and projected climate data and water balance data under three GCMs (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) from 1980 to 2099 was used to assess projected climate change impacts in North Central U.S. We obtained required data from MACA data (https://climate.northwestknowledge.net/MACA/). Historical time period ranges from 1980 to 2005, and projected time period ranges from 2071 to 2099.

Preparing for an uncertain future: migrating shorebird response to past climatic fluctuations in the Prairie Potholes

Abstract from Ecosphere: The Prairie Pothole Region, situated in the northern Great Plains, provides important stopover habitat for migratory shorebirds. During spring migration in the U.S. Prairie Potholes, 7.3 million shorebirds refuel in the region's myriad small, freshwater wetlands. Shorebirds use mudflats, shorelines, and ephemeral wetlands that are far more abundant in wet years than dry years. Generally, climate change is expected to bring warmer temperatures, seasonality shifts, more extreme events, and changes to precipitation.

Final Report for Capacity Building in the North Central Climate Science Center Domain

The Capacity Building Project increased the North Central Climate Science Center (NC CSC) constituents’ abilities to gather and use climate data through formation of the Indigenous Phenology Network (IPN), collaboration with AmericaView to join the PhenoCam network, partnership with the National Conservation Training Center (NCTC) to offer free regional climate smarts courses, and mentoring of students. 

Improving Projections of Wildlife and Landscapes for Natural Resource Managers

Managing natural resources is fraught with uncertainties around how complex social-ecological systems will respond to management actions and other forces, such as climate. Modeling tools have emerged to help grapple with different aspects of this challenge, but they are often used independently. The purpose of this project is to link two types of commonly-used simulation models (agent-based models and state-and-transition simulation models) and streamline the handling of model inputs and outputs.

Improving the Success of Post-Fire Adaptive Management Strategies in Sagebrush Steppe

Sagebrush steppe is one of the most widely distributed ecosystems in North America. Found in eleven western states, this important yet fragile ecosystem is dominated by sagebrush, but also contains a diversity of native shrubs, grasses, and flowering plants. It provides critical habitat for wildlife like pronghorn and threatened species such as the greater sage-grouse, and is grazed by livestock on public and private lands. However, this landscape is increasingly threatened by shifts in wildfire patterns, the spread of invasive grasses, and changing climate conditions.

Big Sagebrush Response to Wildfire and Invasive Grasses in the 21st Century

Big sagebrush plant communities are important and widespread in western North America and are crucial for meeting long-term conservation goals for greater sage-grouse and other wildlife of conservation concern. Yet wildfire is increasing in the West, turning biodiverse, shrub-based ecosystems dominated by sagebrush into grasslands containing invasive species such as cheatgrass and less overall plant and animal diversity. These transformations negatively impact people and ecosystems by reducing habitat quality for wildlife and the aesthetic value of the landscape.
 

Enabling Climate-Informed Planning and Decisions about Species of Conservation Concern in the North Central Region: Phase 2

Changing climate conditions such as increasing droughts, floods, and wildfires, hotter temperatures, declining snowpacks, and changes in the timing of seasonal events are already having an impact on wildlife and their habitats. In order to make forward-looking management decisions that consider ongoing and future projected changes in climate, managers require access to climate information that can be easily integrated into the planning process.