Pinus edulis Hot/Dry Scenario Change Categories (2035)

Projected suitable habitat models were constructed in randomForest (R package, version 4.6-10) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario.

Time Series of the Anomalies in Temperature and Precipitation Metrics Between 1950-2099 for Southwestern Colorado Under Three Future Climate Scenarios

These datasets contain time series of anomalies, relative to 1971-2000 period, in the mean, daily minimum and maximum temperatures (F), precipitation (%), growing season lenght (GSL in days), and warm season duration index (WSDI in days) for the Southwest Colorado region for the three future climate scenarios considered in the Social Ecological and Climate Resiliency (SECR) project.

Time Series of the Anomalies in Soil Moisture and Runoff Between 1950-2099 for the Pinyon-Juniper Ecosystem of Southwest Colorado Under Three Future Climate Scenarios

These datasets contain time series of anomalies, relative to 1950-1999 period, in the annual and seasonal soil moisture (%) and runoff (%) in the Pinyon-Juniper ecosystem of Southwest Colorado for the three future climate scenarios considered in the Social Ecological and Climate Resiliency (SECR) project.

Time Series of the Anomalies in Soil Moisture, Runoff, Precipitation and Evapotranspiration Between 1950-2099 in the Upper Gunnison Basin in Southwest Colorado Under Three Future Climate Scenarios

These datasets contain time series of anomalies, relative to 1950-1999 period, in the annual and seasonal soil moisture (%), runoff (%), precipitation (%) and evapotranspiration (%) in the Upper Gunnison Basin in Southwest Colorado for the three future climate scenarios considered in the Social Ecological and Climate Resiliency (SECR) project.

Projected Habitat Suitability Change for Feast/Famine Scenario (2035)

Projected suitable habitat models were constructed using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario.

Projected Habitat Suitability Change for Hot/Dry Scenario (2035)

Projected suitable habitat models were constructed using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario.

Projected Habitat Suitability Change for Warm/Wet Scenario (2035)

Projected suitable habitat models were constructed using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario.

Final Report for Informing the Identification of Economically Effective Targets for Grassland Conservation in the Dakotas

America’s remaining grassland in the Prairie Pothole Region (PPR) is at risk of being lost to crop production. When crop prices are high, like the historically high corn prices that the U.S. experienced between 2008 and 2014, the risk of grassland conversion is even higher. Changing climate will add uncertainties to any efforts toward conservation of grassland in the PPR. Grassland conversion to cropland in the region would imperil nesting waterfowl among other species and further impair water quality in the Mississippi watershed.

How and why Upper Colorado River Basin land, water, and fire managers choose to use drought tools (or not)

On the Western Slope of Colorado, variable climate and precipitation conditions are typical. Periods of drought—which may be defined by lack of water, high temperatures, low soil moisture, or other indicators—cause a range of impacts across sectors, including water, land, and fire management.The Western Slope’s Upper Colorado River Basin (UCRB) was one of the first pilot areas in which the National Integrated Drought Information System (NIDIS) implemented a drought early warning system (DEWS) in 2009.