Juniperus osteosperma Warm/Wet Scenario Change Categories (2035)

Projected suitable habitat models were constructed in randomForest (R package, version 4.6-10) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario.

Juniperus osteosperma Hot/Dry Scenario Change Categories (2035)

Projected suitable habitat models were constructed in randomForest (R package, version 4.6-10) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario.

Artemisia tridentata spp. vaseyana Feast/Famine Scenario Change Categories (2035)

Projected suitable habitat models were constructed in Maxent (version 3.3; Phillips et al. 2004, 2006) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario.

Artemisia tridentata spp. vaseyana Warm/Wet Scenario Change Categories (2035)

Projected suitable habitat models were constructed in Maxent (version 3.3; Phillips et al. 2004, 2006) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario.

Artemisia tridentata spp. vaseyana Hot/Dry Scenario Change Categories (2035)

Projected suitable habitat models were constructed in Maxent (version 3.3; Phillips et al. 2004, 2006) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario.

Artemisia tridentata spp. wyomingensis Feast/Famine Scenario Change Categories (2035)

Projected suitable habitat models were constructed in Maxent (version 3.3; Phillips et al. 2004, 2006) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario.

Artemisia tridentata spp. wyomingensis Warm/Wet Scenario Change Categories (2035)

Projected suitable habitat models were constructed in Maxent (version 3.3; Phillips et al. 2004, 2006) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario.

Artemisia tridentata spp. wyomingensis Hot/Dry Scenario Change Categories (2035)

Projected suitable habitat models were constructed in Maxent (version 3.3; Phillips et al. 2004, 2006) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario.

Pinus edulis Feast/Famine scenario change categories (2035)

Projected suitable habitat models were constructed in randomForest (R package, version 4.6-10) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario.

Pinus edulis Warm/Wet Scenario Change Categories (2035)

Projected suitable habitat models were constructed in randomForest (R package, version 4.6-10) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario.